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Abstract. The asymptotical (k +CO) behaviour of zeros of the polynomials g;,"(v) encoun- 
tered in the treatment of direct and inverse problems of scattering in neutron transport as 
well as radiative transfer theories is investigated in terms of the amplitude KJk of the kth 
Legendre polynomial needed in the expansion of the scattering function. The parameters 
GI, describe the anisotropy of scattering of the medium considered. In particular, it is shown 
that the asymptotical density of zeros of the polynomials g p ( v )  is an inverted semicircle for 
the anisotropic non-multiplying scattering medium. 

1. Introduction 

The polynomials gkm(v) were introduced long ago (Chandrasekhar 1950, Davison 1957) 
in the treatment of the fundamental transfer equation which governs the variation in 
energy intensity of a pencil of radiation traversing a medium. These polynomials have 
been shown to play a fundamental role for the solution of both direct (see, e.g., Davison 
1957, Boffi and Trombetti 1967, Mullikin 1964, Cacuci and Goldstein 1977) and 
inverse problems (see, e.g., Case 1973, Kana1 and Moses 1978a, b) in neutron transport 
theory. In particular the polynomials g r ( v )  have been extensively used to solve the 
transport technique (Davison 1957) in both cases of isotropic scattering medium and 
anisotropic scattering medium. 

In the last case people always assume that the scattering function is of finite order N 
and can be expanded in terms of the first N Legendre polynomials. Recently (McCor- 
mick and Veeder 1978) in studying the infinite-medium inverse transport problem it 
has been shown that the polynomials gkm(v) are very useful for the calculation of the 
integral moments of the neutron flux over all space and angles, in terms of which the 
scattering coefficients of the medium can be determined. 

The orthogonality properties of these polynomials and other of their important 
properties which are of interest for neutron transport and radiative transfer theories 
have been considered in detail (Inonii 1970) in the case of m = 0 and azimuthal 
independence. For the general case, i.e. m # 0 and azimuthal dependence, these 
properties have been examined (Veeder 1977) and the relationship between these 
polynomials and the associated Legendre polynomials have been given. 

The zeros of the polynomials g form an approximate representation for transport 
theory of the spectrum of discrete eigenvalues and the continuum from -1 d U s + 1. 
These zeros are tabulated (see, e.g., Davison 1957, pp 119-21). In the method of 
spherical harmonics for solving transport problems, the zeros of g L + l ( v )  = 0 are the 
eigenvalues for the PL method. The largest eigenvalue tends to approximate the 
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discrete eigenvalue, while others tend to fill in the continuum between -1 and +1 as L 
increases. It is known (McCormick and KuSEer 1973) that as the number of terms L in 
the PL method becomes large, the results tend to be exact eigenvalue spectra 
reproduced with a method such as the singular eigenfunction expansion technique. 

The purpose of the present paper is to investigate the asymptotical distribution of 
the zeros of the polynomials g in terms of the amplitude @k of the kth Legendre 
polynomial needed in the above mentioned expansion of the scattering function. The 
parameters @k describe (Case and Zweifel 1967) the anisotropy of scattering of the 
medium. The structure of the paper is as follows. Section 2 contains the definition of 
the polynomials and theorem A which play a predominant role later on. In § 3 the 
average asymptotic properties of the zeros obtained are included. First the results are 
written in the form of theorems and then the proofs of them are given. In particular, it is 
shown that in the case of anisotropic scattering the asymptotical density of zeros of the 
polynomials g for a non-multiplying medium is an inverted semicircular distribution. 

2. Definition and tools 

Let us consider the polynomials g; ( v )  defined by the following recurrence relation: 

hk-i k + m - 1  
k - m  k - m  g r ( Y ) = -___ vg r- 1 ( Y ) - gr-2 ( V I  k a m  

with the initial conditions 

Here m can be any non-negative integer and hk is given by 

hk = 2k 4- 1 - f l k  

@k = (2k + 1)Cfk. 

(2) 

with 

(3) 
Here c and f k  are real parameters. From a physical point of view c is the mean number 
of secondary particles per collision and the valuesfk are the expansion coefficients of the 
scattering or phase function. In particular, fo = 1 and f l  is equal to the mean cosine of 
the scattering angle in the laboratory coordinate system. 

The polynomials g r ( v )  are of order k -m, alternatively even and odd. They are a 
generalisation (Chandrasekhar 1950, McCormick and Veeder 1978) of a modified 
version of the associated Legendre polynomials, and reduce to these in the limit that 
a k  -+ 0 for all k, i.e. when the medium becomes purely absorbing. 

To end this section we shall write a theorem from the general theory of orthogonal 
polynomials found recently (Nevai and Dehesa 1979) which is the main tool used to 
obtain the results of this paper. 

Theorem A.  Let Rand Rf be the set of real numbers and the set of positive real numbers 
respectively. Let q5 : R’ -+ R’ be a non-decreasing function,such that for every fixed t E R 
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Let us consider the set of orthogonal polynomials {Pk(x ) ;  k = 0,  1 , 2 ,  . . .}defined by the 
following three-term recursion relation: 

Pk (X)  = ( X  - Uk)Pk-i(x) - b2k&z(X) 
P-l(X) = 0 Po(x)  = 1 k = l , 2 , 3  , . . . .  ( 5 )  

Furthermore, assume that there exist two numbers U and b F 0 such that the coefficients 
ak and bk satisfy 

Then for every non-negative integer r 

where X l k  are the zeros of p k ( x )  and [ r /2]  is equal to i r  or $(r - 1)when r is even or odd 
respectively. 

3. Results 

The main results are written in the form of the following four theorems. 

Theorem 1. Let C$ be a function defined as in theorem A. If the h k  defined by ( 2 )  satisfy 
the condition 

k-co  lim ( ( k - l ) 2 - m 2 ) 1 ’ 2 4 ( k )  h k - l h k - 2  ----=5bFO 1 1  (8) 

then for every non-negative integer r, 

if r is odd 
lim 

where {xi;);  1 = 1 , 2 , .  . . , n }  are the zeros of the polynomial g r ( x ) .  

( 9 )  

Notice that when the hk’s are either constant (i.e. not dependent on k )  or continuous 
for large k.  This assumption is made functions of the subscript k ,  then hk-lhk-2 = 

from here onwards. Consequently 

Theorem 2. Let us assume that there exists B 3 0 such that 

[(k-1)2-”]1’2 1 
lim , - 2 b F 0 .  
k - t m  kBhk-l 
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T h e n f o r r = 0 , 1 , 2  , , . . .  
0 if r is odd 

1 
- (ib)' ( r;2) rB + 1 

if r is even. 

Theorem 3. If the non-negativity condition 

[(k - 1)2 - m2]1/2 lim =j-b>O 

is fulfilled, then 

where { p : ;  r = 1,2 ,  , , .} are the moments of the asymptotical distribution density of 
zeros of the polynomials { g p ( v ) } .  

Theorem 4 .  The asymptotical distribution density of zeros of the polynomials gkm(x) 
which arise in transport theories (e.g. neutron or radiative for the cases of both an 
isotropic medium and an anisotropic non-multiplying medium is given by 

(1 -x2)-1/2/n. for- 1 < x < 1 

otherwise. 
P ( V )  = { (15) 

In the rest of the paper we shall prove these theorems. 

Proof of theorem 1. Any set of orthogonal polynomials {P,(x); n = 1 , 2 ,  . . .} fulfils 
(Szego 1978) a three-term recurrence relation of the form 

Pfl(x) = (A,x +B,)P,-i(x) - Cnp,-2(x) 

P - l ( X )  = 0 
(16) 

Po(x) = 1 n = 1 , 2 , 3 , .  . . 
with A, # O  and C, # 0. It is easy to show that the polynomials Q,(x)= 
P,(x)/A1A2. . . A, satisfy the recurrence relation 

Q,b) = (x -a,)Qfl-l(x)-b2,Q,-2(x) 

Q-l(x) 0 Q ~ ( x )  E 1 n = 1 , 2 , 3 , .  . . 
(17) 

with 

a, = -B,/A, and b; = C,/A,A,-i. 

Notice that the zeros of Q, (x) coincide with those of P, (x). Therefore the polynomials 
g p ( v )  defined by the relation (1) have the same zeros as the polynomials Qk(x) defined 
by (17) with the coefficients ak and bk as follows: 

ak = o  and b', = [(k - m2]/hk-2hk-l. 

The application of theorem A to the polynomials Qk(x) first produces the values a = 0 
and the expression (8) for the parameter b. Replacing these two values into (7) gives rise 
to equation (10). Then theorem 1 is proved. 
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Proof of theorem 2. Choosing 4 ( k )  = k B ,  B 3 0 and taking into account (10) it turns out 
that the inequality (8) of theorem 1 transforms into inequality (11). Since in this case 

lon [ 4 ( t ) ] '  dt  = nBrt ' /(rB + 1) 

the equation (9) reduces to the simpler equation ( 1 2 ) .  Theorem 2 is also proved. 

Proof of theorem 3. For B = 0, equations (1 1) and (12) reduce in a straightforward 
manner to the simpler equations (13) and (14) of theorem 3, where we have used the 
definition of moments p ;  of the asymptotical density of zeros p ( v )  of the polynomials 
{ g Y ( v ) l ,  i.e. 

To understand this, one should remember that 

p ( v )  = lim p ( " ) ( v )  
n - t q  

where p ( " ) ( v )  is the discrete distribution density of zeros of the polynomial g r ( v ) .  This 
proves theorem 3. 

Proof of theorem 4.  For an isotropic medium, f k  = a k a .  Therefore relations (2) and (3) 
show that 

Then the value of b according to (1 3) is 

h k  = ( 2 k  + 1)(1 -Cc?ko) .  

[ ( k  - 1)2 - m2I1/' 
b = 2  lim = 1, 

k-+m ( 2 k  - 1)(1 - C a k - i , o )  

with which the expressions (14) reduce to 

These quantities are the moments of the inverted semicircular distribution density given 

In the case of an anisotropic non-multiplying medium, i.e. when c < 1, it turns out 
by (15). 

that l t t t k l <  1 and then according to (13) one gets 

[(k-1)2-m2]1/2 
2k  - 1 - t t tk-1 

b = 2  lim =1  
k + m  

Therefore one again obtains the function defined by (15). Theorem 4 is therefore 
proved. 
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